Windows 95 / Windows NT International

Multilingual IME API Specification for IME

Version 1.18

Last Revised: May 16,1996

�

�
� TOC \o "1-3" �1. APIs	� GOTOBUTTON _Toc360553580 � PAGEREF _Toc360553580 �6��

1.1. List of IMM APIs that can be used in UI window	� GOTOBUTTON _Toc360553581 � PAGEREF _Toc360553581 �6��

1.2. List of IMM APIs to support IME	� GOTOBUTTON _Toc360553582 � PAGEREF _Toc360553582 �6��

1.2.1. ImmGenerateMessage	� GOTOBUTTON _Toc360553583 � PAGEREF _Toc360553583 �6��

1.3. List of HIMC and HIMCC management APIs	� GOTOBUTTON _Toc360553584 � PAGEREF _Toc360553584 �7��

1.3.1. ImmLockIMC	� GOTOBUTTON _Toc360553585 � PAGEREF _Toc360553585 �7��

1.3.2. ImmUnlockIMC	� GOTOBUTTON _Toc360553586 � PAGEREF _Toc360553586 �7��

1.3.3. ImmGetIMCLockCount	� GOTOBUTTON _Toc360553587 � PAGEREF _Toc360553587 �7��

1.3.4. ImmCreateIMCC	� GOTOBUTTON _Toc360553588 � PAGEREF _Toc360553588 �8��

1.3.5. ImmDestroyIMCC	� GOTOBUTTON _Toc360553589 � PAGEREF _Toc360553589 �8��

1.3.6. ImmLockIMCC	� GOTOBUTTON _Toc360553590 � PAGEREF _Toc360553590 �8��

1.3.7. ImmUnlockIMCC	� GOTOBUTTON _Toc360553591 � PAGEREF _Toc360553591 �8��

1.3.8. ImmReSizeIMCC	� GOTOBUTTON _Toc360553592 � PAGEREF _Toc360553592 �9��

1.3.9. ImmGetIMCCSize	� GOTOBUTTON _Toc360553593 � PAGEREF _Toc360553593 �9��

1.3.10. ImmGetIMCCLockCount	� GOTOBUTTON _Toc360553594 � PAGEREF _Toc360553594 �9��

1.4. List of IMM APIs to manipulate IME hot keys	� GOTOBUTTON _Toc360553595 � PAGEREF _Toc360553595 �9��

1.4.1. ImmGetHotKey	� GOTOBUTTON _Toc360553596 � PAGEREF _Toc360553596 �11��

1.4.2. ImmSetHotKey	� GOTOBUTTON _Toc360553597 � PAGEREF _Toc360553597 �11��

1.5. List of IMM Soft Keyboard APIs	� GOTOBUTTON _Toc360553598 � PAGEREF _Toc360553598 �12��

1.5.1. ImmCreateSoftKeyboard	� GOTOBUTTON _Toc360553599 � PAGEREF _Toc360553599 �12��

1.5.2. ImmDestroySoftKeyboard	� GOTOBUTTON _Toc360553600 � PAGEREF _Toc360553600 �12��

1.5.3. ImmShowSoftKeyboard	� GOTOBUTTON _Toc360553601 � PAGEREF _Toc360553601 �13��

2. Messages	� GOTOBUTTON _Toc360553602 � PAGEREF _Toc360553602 �13��

2.1. WM_IME_SETCONTEXT	� GOTOBUTTON _Toc360553603 � PAGEREF _Toc360553603 �13��

2.2. WM_IME_CONTROL	� GOTOBUTTON _Toc360553604 � PAGEREF _Toc360553604 �14��

IMC_GETCANDIDATEPOS	� GOTOBUTTON _Toc360553605 � PAGEREF _Toc360553605 �14��

IMC_GETCOMPOSITONFONT	� GOTOBUTTON _Toc360553606 � PAGEREF _Toc360553606 �14��

IMC_GETCOMPOSITONWINDOW	� GOTOBUTTON _Toc360553607 � PAGEREF _Toc360553607 �14��

IMC_GETSOFKBDFONT	� GOTOBUTTON _Toc360553608 � PAGEREF _Toc360553608 �15��

IMC_GETSOFTKBDPOS	� GOTOBUTTON _Toc360553609 � PAGEREF _Toc360553609 �15��

IMC_GETSOFTKBDSUBTYPE	� GOTOBUTTON _Toc360553610 � PAGEREF _Toc360553610 �15��

IMC_GETSTATUSWINDOWPOS	� GOTOBUTTON _Toc360553611 � PAGEREF _Toc360553611 �15��

IMC_SETCANDIDATEPOS	� GOTOBUTTON _Toc360553612 � PAGEREF _Toc360553612 �16��

IMC_SETCOMPOSITONFONT	� GOTOBUTTON _Toc360553613 � PAGEREF _Toc360553613 �16��

IMC_SETCOMPOSITONWINDOW	� GOTOBUTTON _Toc360553614 � PAGEREF _Toc360553614 �16��

IMC_SETSOFKBDDATA	� GOTOBUTTON _Toc360553615 � PAGEREF _Toc360553615 �16��

IMC_SETSOFKBDSUBTYPE	� GOTOBUTTON _Toc360553616 � PAGEREF _Toc360553616 �16��

IMC_SETSOFKBDFONT	� GOTOBUTTON _Toc360553617 � PAGEREF _Toc360553617 �17��

IMC_SETSOFTKBDPOS	� GOTOBUTTON _Toc360553618 � PAGEREF _Toc360553618 �17��

IMC_SETSTATUSWINDOWPOS	� GOTOBUTTON _Toc360553619 � PAGEREF _Toc360553619 �17��

2.3. WM_IME_COMPOSITION	� GOTOBUTTON _Toc360553620 � PAGEREF _Toc360553620 �17��

2.4. WM_IME_COMPOSITIONFULL	� GOTOBUTTON _Toc360553621 � PAGEREF _Toc360553621 �19��

2.5. WM_IME_ENDCOMPOSITION	� GOTOBUTTON _Toc360553622 � PAGEREF _Toc360553622 �19��

2.6. WM_IME_SELECT	� GOTOBUTTON _Toc360553623 � PAGEREF _Toc360553623 �19��

2.7. WM_IME_STARTCOMPOSITION	� GOTOBUTTON _Toc360553624 � PAGEREF _Toc360553624 �20��

2.8. WM_IME_NOTIFY	� GOTOBUTTON _Toc360553625 � PAGEREF _Toc360553625 �20��

IMN_CLOSESTATUSWINDOW	� GOTOBUTTON _Toc360553626 � PAGEREF _Toc360553626 �20��

IMN_OPENSTATUSWINDOW	� GOTOBUTTON _Toc360553627 � PAGEREF _Toc360553627 �20��

IMN_OPENCANDIDATE	� GOTOBUTTON _Toc360553628 � PAGEREF _Toc360553628 �20��

IMN_CHANGECANDIDATE	� GOTOBUTTON _Toc360553629 � PAGEREF _Toc360553629 �21��

IMN_CLOSECANDIDATE	� GOTOBUTTON _Toc360553630 � PAGEREF _Toc360553630 �21��

IMN_SETCONVERSIONMODE	� GOTOBUTTON _Toc360553631 � PAGEREF _Toc360553631 �21��

IMN_SETSENTENCEMODE	� GOTOBUTTON _Toc360553632 � PAGEREF _Toc360553632 �21��

IMN_SETOPENSTATUS	� GOTOBUTTON _Toc360553633 � PAGEREF _Toc360553633 �22��

IMN_SETCANDIDATEPOS	� GOTOBUTTON _Toc360553634 � PAGEREF _Toc360553634 �22��

IMN_SETCOMPOSITIONFONT	� GOTOBUTTON _Toc360553635 � PAGEREF _Toc360553635 �22��

IMN_SETCOMPOSITIONWINDOW	� GOTOBUTTON _Toc360553636 � PAGEREF _Toc360553636 �22��

IMN_GUIDELINE	� GOTOBUTTON _Toc360553637 � PAGEREF _Toc360553637 �23��

IMN_SOFTKBDDESTROYED	� GOTOBUTTON _Toc360553638 � PAGEREF _Toc360553638 �23��

2.9. WM_IME_KEYDOWN / WM_IME_KEYUP	� GOTOBUTTON _Toc360553639 � PAGEREF _Toc360553639 �23��

2.10. WM_IME_CHAR	� GOTOBUTTON _Toc360553640 � PAGEREF _Toc360553640 �24��

2.11. VK_PROCESSKEY	� GOTOBUTTON _Toc360553641 � PAGEREF _Toc360553641 �24��

3. IME Interface	� GOTOBUTTON _Toc360553642 � PAGEREF _Toc360553642 �24��

3.1. Overview	� GOTOBUTTON _Toc360553643 � PAGEREF _Toc360553643 �24��

3.2. List of IME Interface Functions	� GOTOBUTTON _Toc360553644 � PAGEREF _Toc360553644 �25��

3.2.1. ImeInquire	� GOTOBUTTON _Toc360553645 � PAGEREF _Toc360553645 �25��

3.2.2. ImeConversionList	� GOTOBUTTON _Toc360553646 � PAGEREF _Toc360553646 �25��

3.2.3. ImeConfigure	� GOTOBUTTON _Toc360553647 � PAGEREF _Toc360553647 �26��

3.2.4. ImeDestroy	� GOTOBUTTON _Toc360553648 � PAGEREF _Toc360553648 �27��

3.2.5. ImeEscape	� GOTOBUTTON _Toc360553649 � PAGEREF _Toc360553649 �27��

3.2.6. ImeSetActiveContext	� GOTOBUTTON _Toc360553650 � PAGEREF _Toc360553650 �29��

3.2.7. ImeProcessKey	� GOTOBUTTON _Toc360553651 � PAGEREF _Toc360553651 �30��

3.2.8. NotifyIME	� GOTOBUTTON _Toc360553652 � PAGEREF _Toc360553652 �30��

3.2.9. ImeSelect	� GOTOBUTTON _Toc360553653 � PAGEREF _Toc360553653 �33��

3.2.10. ImeSetCompositionString	� GOTOBUTTON _Toc360553654 � PAGEREF _Toc360553654 �33��

3.2.11. ImeToAsciiEx	� GOTOBUTTON _Toc360553655 � PAGEREF _Toc360553655 �33��

3.2.12. ImeRegisterWord	� GOTOBUTTON _Toc360553656 � PAGEREF _Toc360553656 �34��

3.2.13. ImeUnregisterWord	� GOTOBUTTON _Toc360553657 � PAGEREF _Toc360553657 �35��

3.2.14. ImeGetRegisterWordStyle	� GOTOBUTTON _Toc360553658 � PAGEREF _Toc360553658 �35��

3.2.15. ImeEnumRegisterWord	� GOTOBUTTON _Toc360553659 � PAGEREF _Toc360553659 �35��

��

�
�autonumlgl �� APIs

 List of IMM APIs that can be used in UI window

These are IMM function that can be used from UI window.

ImmGetCompositionWindow

ImmSetCompositionWindow

ImmGetCandidateWindow

ImmSetCandidateWindow

ImmGetCompositionString

ImmSetCompositionString

ImmGetCompositionFont

ImmSetCompositionFont

ImmGetNumCandidateList

ImmGetCandidateList

ImmGetGuideLine

ImmGetConversionStatus

ImmGetConversionList

ImmGetOpenStatus

ImmSetConversionStatus

ImmSetOpenStatus

ImmNotifyIME

ImmCreateSoftKeyboard

ImmDestroySoftkeyboard

ImmShowSoftKeyboard

 List of IMM APIs to support IME

These IMM functions help IME.

 ImmGenerateMessage

Syntax	BOOL WINAPI ImmGenerateMessage(hIMC)

Feature	An IME uses this API to generate messages that are stored in hMsgBuf of hIMC. ImmGenerateMessage() Sends the messages in the hMsgBuf to the hWnd of hIMC..

Parameter	Type	Description

hIMC	HIMC	The Input Context that has hMsgBuf

Return value	TRUE if the function is successful, FALSE if not.

Notes	This is a general purpose API but typically, an IME uses this API when it is notified about context update with ImmNotifyIME() from IMM. In such case, even if IME needs to provide messages to an application, there’s no key storoke in application’s message queue.

	An IME User Interface shouldn’t use this function when it just wants to update UI appearance. The IME User Interface should have been updated when the IME is informed the updated Input Context. It is recommended to use this function from IME only when the IME changes the Input Context without any key stroke given and needs to inform an application of the change.

 List of HIMC and HIMCC management APIs

 ImmLockIMC

Syntax	LPINPUTCONTEXT WINAPI ImmLockIMC(hIMC)

Feature	When IME want to see the INPUTCONTEXT itself, IME call this API and it can get the pointer of INPUTCONTEXT Structure. The ImmLockIMC API increases the lock count for IMC.

Parameter	Type	Description

hIMC	HIMC	The Input Context.

Return value	Pointer of INPUTCONTEXT if the function is successful, NULL if not.

 ImmUnlockIMC

Syntax	BOOL WINAPI ImmUnlockIMC(hIMC)

Feature	The ImmUnlockIMC API decrements the lock count for IMC.

Parameter	Type	Description

hIMC	HIMC	The Input Context.

Return value	If the lock count of IMC was decremeted to zero, the return value is FALSE, otherwise, it is TRUE.

 ImmGetIMCLockCount

Syntax	HIMCC WINAPI ImmGetIMCLockCount(hIMC)

Feature	Using the ImmGetIMCLockCount, the IME can get the lock count of IMC.

Parameter	Type	Description

hIMC	HIMC	the handle of IMC

Return value	the lock count of IMC.

 ImmCreateIMCC

Syntax	HIMCC WINAPI ImmCreateIMCC(dwSize)

Feature	Using this API, IME can create new IMC Component that can be the member of IMC.

Parameter	Type	Description

dwSize	DWORD	Size of the new IMC component.

Return value	HIMCC (IMC Component handle) if the function is successful, zero if not.

Note	The IMC component that is created by this API is innitialized with 0.

 ImmDestroyIMCC

Syntax	HIMCC WINAPI ImmDestroyIMCC(hIMCC)

Feature	Using this API, IME can destroy IMC Component that can be the member of IMC.

Parameter	Type	Description

hIMCC	HIMCC	the handle of IMC Component

Return value	NULL if the function is successful, Otherwise, it is equal to the HIMCC.

 ImmLockIMCC

Syntax	LPVOID WINAPI ImmLockIMCC(hIMCC)

Feature	Using this API, IME can get the pointer for IMC Component that can be the member of IMC. The ImmLockIMC API increases the lock count for IMCC.

Parameter	Type	Description

hIMCC	HIMCC	the handle of IMC Component

Return value	the pointer for the IMC component if the function is successful, NULL if not.

 ImmUnlockIMCC

Syntax	BOOL WINAPI ImmUnlockIMCC(hIMCC)

Feature	The ImmUnlockIMC API decrements the lock count for IMCC.

Parameter	Type	Description

hIMCC	HIMCC	the handle of IMC Component

Return value	If the lock count of IMCC was decremeted to zero, the return value is FALSE, otherwise, it is TRUE.

 ImmReSizeIMCC

Syntax	HIMCC WINAPI ImmReSizeIMCC(hIMCC, dwSize)

Feature	This API change the size of the component.

Parameter	Type	Description

hIMCC	HIMCC	the handle of IMC Component.

dwSize	DWORD	the new size of IMC Component.

Return value	new HIMCC if the function is successful, zero if not.

 ImmGetIMCCSize

Syntax	DWORD WINAPI ImmGetIMCCSize(hIMCC)

Feature	Using the ImmGetIMCCLockCount, the IME can get the size of IMCC.

Parameter	Type	Description

hIMCC	HIMCC	the handle of IMC Component

Return value	the size of IMCC.

 ImmGetIMCCLockCount

Syntax	DWORD WINAPI ImmGetIMCCLockCount(hIMCC)

Feature	Using the ImmGetIMCCLockCount, the IME can get the lock count of IMCC.

Parameter	Type	Description

hIMCC	HIMCC	the handle of IMC Component

Return value	the lock count of IMCC.

List of IMM APIs to manipulate IME hot keys

The IME hot key is for changing IME input mode or switching the IME. The IME hot key for switching directly to an IME is called direct switching hot key. The direct switching hot key is range from IME_HOTKEY_DSWITCH_FIRST to IME_HOTKEY_DSWITCH_LAST. It is registered by an IME or control panel if the IME or an end user wants to has such a hot key. The IME hot key is effective in all IME and no matter which IME is active. In Windows 95-FE, several predefined hot key funtionalities are defined by IMM. The IMM itself provides the functionality (different handling routines) of those hot key functions. Every hot key funtionality in Windows 95-FE has a different hot key ID in IMM, each ID has it own functionality according to requirements of each country. Application has no way to add another predefined hot key ID into the system.

The predefined hot key IDs are -

Hot Key ID	Description

IME_CHOTKEY_IME_NONIME_TOGGLE	The hot key of Windows for Simplified Chinese Edition, this hot key toggle between IME and non IME.

IME_CHOTKEY_SHAPE_TOGGLE	The hot key of Windows for Simplified Chinese Edition, this hot key toggle the shape conversion mode of IME.

IME_CHOTKEY_SYMBOL_TOGGLE 	The hot key of Windows for Simplified Chinese Edition, this hot key toggle the symbol coversion mode of IME. The symbol mode indicates that user can input Chinese punctuation and symbols (full shape chars) by mapping it to the punctuation and symbol keystrokes of keyboard.

IME_JHOTKEY_CLOSE_OPEN	The hot key of Windows for Japanese Edition, this hot key toggle between close and open.

IME_THOTKEY_IME_NONIME_TOGGLE	The hot key of Windows for (Tranditional) Chinese Edition this hot key toggle between IME and non IME.

IME_THOTKEY_SHAPE_TOGGLE	The hot key of Windows for (Tranditional) Chinese Edition, this hot key toggle the shape conversion mode of IME.

IME_THOTKEY_SYMBOL_TOGGLE	The hot key of Windows for (Tranditional) Chinese Edition, this hot key toggle the symbol conversion mode of IME.

The other kind of the hot key is the IME private hot key, there is no functionality for this kind of hot key. It just a place holder for a hot key value. An IME can get this value by ImmGetHotKey. If an IME support this functionality for one hot key ID, every time the IME find this key input it will perform the functionality.

The current private IME hot key IDs in Windows 95-FE are -

Hot Key ID	Description

IME_ITHOTKEY_RESEND_RESULSTR	The hot key of Windows for (Tranditional) Chinese Edition, this hot key should trigger the IME resend the previous result string to application. So if the IME detect this hot key is pressed, it need to resend the previous result string to this application.

IME_ITHOTKEY_PREVIOUS_COMPOSITION	�The hot key of Windows for (Tranditional) Chinese Edition, this hot key should trigger the IME bring up the previous composition string to the application.

IME_ITHOTKEY_UISTYLE_TOGGLE	�The hot key of Windows for (Tranditional) Chinese Edition, this hot key should trigger the IME UI toggle the UI style between caret unrelated UI and the caret related UI.

 ImmGetHotKey

Syntax	BOOL WINAPI ImmGetHotKey(dwHotKeyID, lpuModifiers, lpuVKey, lphKL)

Feature	Gets the value of the IME hot key.

Parameter	Type	Description

dwHotKeyID	DWORD	The hot key ID.

lpuModifiers	LPUINT	The combination keys with the hot key, it includes ALT (MOD_ALT), CTRL (MOD_CONTROL), SHIFT (MOD_SHIFT), left hand side (MOD_LEFT), and right hand side (MOD_RIGHT). The key up flag (MOD_ON_KEYUP) indicates the hot key is effective when the key is up. The modifier ignore flag (MOD_IGNORE_ALL_MODIFIER) indicates the combination of modifiers will be ignore in hot key matching.

lpuVKey	LPUINT	The virtual key code of this hot key.

lphKL	LPHKL	The hKL of the IME. If return value of this parameter is of NULL, this hot key can switch to the IME with this HKL.

Return value	TRUE - successful, FALSE - failure.

Notes	This API is called by control panel.

 ImmSetHotKey

Syntax	BOOL WINAPI ImmSetHotKey(dwHotKeyID, uModifiers, uVKey, hKL)

Feature	Sets the value of the IME hot key.

Parameter	Type	Description

dwHotKeyID	DWORD	The hot key ID.

uModifiers	UINT	The combination keys with the hot key, it includes ALT (MOD_ALT), CTRL (MOD_CONTROL), SHIFT (MOD_SHIFT), left hand side (MOD_LEFT), and right hand side (MOD_RIGHT). The key up flag (MOD_ON_KEYUP) indicates the hot key is effective when the key is up. The modifier ignore flag (MOD_IGNORE_ALL_MODIFIER) indicates the combination of modifiers will be ignore in hot key matching.

uVKey	UINT	The virtual key code of this hot key.

hKL	hKL	The HKL of the IME. If this parameter is specified, this hot key can switch to the IME with this HKL.

Return value	TRUE - successful, FALSE - failure.

Notes	This API is called by control panel. For a key don’t have different hand side, the uModifiers should specify both sides (MOD_LEFT|MODE_RIGHT).

 List of IMM Soft Keyboard APIs

 ImmCreateSoftKeyboard

Syntax	HWND WINAPI ImmCreateSoftKeyboard(uType, hOwner, x, y)

Feature	Creates one type of soft keyboard window.

Parameter	Type	Description

uType	UINT	Specifies the type of the soft keyboard.

hOwner	UINT	Specifies the owner of the soft keyboard. It must be the UI window.

x	int	Specifies the initial horizontal position of the soft keyboard.

y	int	Specifies the initial vertical position of the soft keyboard.

uType	Description

SOFTKEYBOARD_TYPE_T1	The type T1 soft keyboard. This kind of soft keyboard should be updated by IMC_SETSOFTKBDDATA.

SOFTKEYBOARD_TYPE_C1	The type C1 soft keyboard. This kind of soft keyboard should be updated by IMC_SETSOFTKBDDATA with two set of 256-word array data. The first set is for non-shift state, and the second is for shift state.

Return value	The window handle of soft keyboard.

 ImmDestroySoftKeyboard

Syntax	BOOL WINAPI ImmDestroySoftKeyboard(hSoftKbdWnd)

Feature	Destroys soft keyboard window.

Parameter	Type	Description

hSoftKbdWnd	HWND	The window handle of the soft keyboard to destroy.

Return value	If the function succeeds the return value is TRUE, otherwise is FALSE.

 ImmShowSoftKeyboard

Syntax	BOOL WINAPI ImmShowSoftKeyboard(hSoftKbdWnd, nCmdShow)

Feature	Sets the given soft keyboard’s show state.

Parameter	Type	Description

hSoftKbdWnd	HWND	The window handle of the soft keyboard.

nCmdShow	int	show state of window.

nCmdShow	Meaning

SW_HIDE	Hides the soft keyboard.

SW_SHOWNOACTIVATE	Display the soft keyboard

Return value	If the function succeeds the return value is TRUE, otherwise is FALSE.

 Messages

These are messages that UI window recieves.

WM_IME_SETCONTEXT

Feature	This message is sent to an application when a window of the application is being activated. If the application does not have its Application IME window, the application have to pass this message to the DefWindowProc and should return the return value of the DefWindowProc. If the application has its Application IME window, the application should call ImmIsUIMessage.

wParam	fSet = (BOOL)wParam;

	fSet is TRUE when the Input Context gets active for the application. When it is FALSE, the Input Context gets inactive for the application..

lParam	lParam is the combination of following bits.

	ISC_SHOWUICOMPOSITIONWINDOW

		To show the composition window.

	ISC_SHOWUIGUIDWINDOW

		To show the guide window.

	ISC_SHOWUISOFTKBD

		To show the soft keyboard.

	ISC_SHOWUICANDIDATEWINDOW

		To show the candidate window of Index 0.

	(ISC_SHOWUICANDIDATEWINDOW << 1)

		To show the candidate window of Index 1.

	(ISC_SHOWUICANDIDATEWINDOW << 2)

		To show the candidate window of Index 2.

	(ISC_SHOWUICANDIDATEWINDOW << 3)

		To show the candidate window of Index 3.

Note	After the applications call DefWindowProc() or call ImmIsUIMessage() with WM_IME_SETCONTEXT. UI window will receive WM_IME_SETCONTEXT. If the bit is on, UI window show the composition, guide or candidate window as bit status of lParam.

	If the application draws the composition window by itself, UI window does not need to show its composition window. Then the application has to clear ISC_SHOWUICOMPOSITIONWINDOW bit of lParam and calls DefWindowProc() or ImmIsUIMessage() with it.

Return value	 The return value of DefWindowProc() or ImmIsUIMessage.

 WM_IME_CONTROL

This message is a group of sub messages to control IME User Interface. An application uses this message to interact with IME window created by the application.

Followings are list of sub message classified by the value of wParam.

IMC_GETCANDIDATEPOS

Feature	An application sends this message to IME window to get the position of the candidate window. IME can adjust the position of a canididate window regarding to screen boundary or other concerns. An application can get the real position of candidate window to decide whether it want to reposition it to another position.

lParam	lParam = (LPARAM) lpCANDIDATENFORM, buffer to retrieve the position of the candidate window.

Return Value	Non-zero indicates failure otherwise 0.

Note	The return value in the buffer is in the client coordinates of the focus window of an application. The UI window receives this message.

IMC_GETCOMPOSITONFONT

Feature	An application sends this message to IME window get a font to be used for displaying intermediate characters in the composition window.

lParam	lParam = (LPLOGFONT)lpLogFont

Return Value	Non-zero indicates failure otherwise 0.

Note	UI window does not receive this message.

IMC_GETCOMPOSITONWINDOW

Feature	An application sends this message to IME window to get the position of the composition window. An IME may adjust the position of a composition window regarding to some concerns. An application can get the real position of composition window to decide whether it want to reposition it to another position.

lParam	lParam = (LPARAM) lpCOMPOSITIONFORM, buffer to retrieve the position of the composition window.

Return Value	Non-zero indicates failure otherwise 0.

Note	This return value in the buffer is in the client coordinates of the focus window of an application. The UI window receives this message.

IMC_GETSOFKBDFONT

Feature	An IME sends this message to soft keyboard window to get a font to be used for displaying reading characters of keys in the soft keyboard window.

lParam	lParam = (LPLOGFONT)lpLogFont

Return Value	Non-zero indicates failure otherwise 0.

IMC_GETSOFTKBDPOS

Feature	An IME sends this message to soft keyboard window to get the position of the soft keyboard window.

lParam	Not Used.

Return Value	The value specifies a POINTS structure that contains the x- and y-coordinates of the position of the soft keyboard window. It is in screen coordinates.

Note	The POINTS structure has the following form:

	typedef struct tagPOINTS { /* pts */

		SHORT x;

		SHORT y;

	} POINTS;

IMC_GETSOFTKBDSUBTYPE

Feature	An IME sends this message to soft keyboard window to get the subtype of the soft keyboard window set by IMC_SETSOFTKBDSUBTYPE.

lParam	Not Used.

Return Value	The subtype of soft keybpoard set by IMC_SETSOFTKBDSUBTYPE, -1 indictates failure.

IMC_GETSTATUSWINDOWPOS

Feature	An application sends this message to IME window to get the position of the status window.

lParam	Not Used.

Return Value	The value specifies a POINTS structure that contains the x- and y-coordinates of the position of the status window. It is in screen coordinates.

Note	The POINTS structure has the following form:

	typedef struct tagPOINTS { /* pts */

		SHORT x;

		SHORT y;

	} POINTS;

Note	The UI window receives the message.

IMC_SETCANDIDATEPOS

Feature	An application sends this message to IME window to specify recommended position to display a candidate window. This is particularly for such an application which displays composition characters without IME UI but uses IME UI to display candidates.

lParam	lParam = (LPARAM) lpCANDIDATENFORM

		See instructions of CANDIDATEFORM structure for detail.

Return Value	Non-zero indicates failure otherwise 0.

Note	UI window does not receive this message.

IMC_SETCOMPOSITONFONT

Feature	An application sends this message to IME window to specify a font to be used for displaying intermediate characters in the composition window.

lParam	lParam = (LPLOGFONT)lpLogFont

Return Value	Non-zero indicates failure otherwise 0.

Note	UI window does not receive this message.

IMC_SETCOMPOSITONWINDOW

Feature	An application sends this message to IME window to specify style of composition window. In contrast to 3.1, this message specifies composition style to current active Input Context so once an application specify the style, IME User Interface will follow the style whenever it is given the Input Context.

lParam	lParam = (LPARAM) lpCOMPOSITIONFORM

		See instructions of COMPOSITIONFORM structure for detail.

Return Value	Non-zero indicates failure otherwise 0.

Note	IME User Interface has a default style of composition window that is equal to CFS_POINT style. If an application hasn't specified any composition style into its Input Context, IME User Interface retrieves the current caret position and window client area when it opens composition window. It is in client coordinates. The UI window does not receive this message.

IMC_SETSOFKBDDATA

Feature	An IME sends this message to softkeyboard window to specify char code to be used for displaying reading characters of key in the soft keyboard window.

lParam	lParam = (LPSOFTKBDDATA)lpSoftKbdData.

Return Value	Non-zero indicates failure otherwise 0.

Note	UI window does not receive this message.

IMC_SETSOFKBDSUBTYPE

Feature	An IME sends this message to soft keyboard window to specify subtype to be used for displaying reading characters of key in the soft keyboard window. It also can be used for IME specific purpose.

lParam	lParam = lSubType

Return Value	The previous subtype. -1 indicates failure.

Note	UI window does not receive this message. The SOFTKEYBOARD_TYPE_T1 do not use this information, the IME send the message to soft keyboard will not change displaying reading chaarecters. The IME which use SOFTKEYBOARD_TYPE_T1 soft keyboard can freely defined the meaning of this message. The IME can get this data by using IMC_GETSOFTKBDSUBTYPE.

IMC_SETSOFKBDFONT

Feature	An IME sends this message to the soft keyboard window to specify a font to be used for displaying reading characters of keys in the soft keyboard window.

lParam	lParam = (LPLOGFONT)lpLogFont

Return Value	Non-zero indicates failure otherwise 0.

Note	UI window does not receive this message.

IMC_SETSOFTKBDPOS

Feature	An UI window sends this message to soft keyboard window to set the position of the soft keyboard window.

lParam	This specifies a POINTS structure that contains the x- and y-coordinates of the position of the soft keyboard window. This is in screen coordinates.

Return Value	Non-zero indicates failure otherwise 0.

Note	The POINTS structure has the following form:

	typedef struct tagPOINTS { /* pts */

		SHORT x;

		SHORT y;

	} POINTS;

IMC_SETSTATUSWINDOWPOS

Feature	An application sends this message to IME window to set the position of the status window.

lParam	This specifies a POINTS structure that contains the x- an d y-coordinates of the position of the status window. This is in screen coordinates.

Return Value	Non-zero indicates failure otherwise 0.

Note	The POINTS structure has the following form:

	typedef struct tagPOINTS { /* pts */

		SHORT x;

		SHORT y;

	} POINTS;

WM_IME_COMPOSITION

Feature	This is sent 2 bytes of composition character to the application. This message is sent when an IME change composition status as a result of a user's key stroke. IME User Interface Window will change its appearance when it processes this message. An application can call ImmGetCompositionString to obtain new detail composition status.

wParam	Includes 2 bytes of DBCS character that is the latest change of composition character.

lParam	lParam includes the combination of following flags. Basically the flag indicates how composition string or character changed. An application check this to retrieve necessary information.

GCS_COMPSTR

GCS_COMPATTR

GCS_COMPCLAUSE

GCS_COMPREADSTR

GCS_COMPREADATTR

GCS_COMPREADCLAUSE

GCS_TYPINGINFO

GCS_SETCURSORPOS

GCS_RESULTSTR

GCS_RESULTCLAUSE

GCS_RESULTREADSTR

GCS_RESULTREADCLAUSE

GCR_ERRORSTR

GCR_INFOSTR

	The following value indicate special meaning as style bits for WM_IME_COMPOSITION.

CS_INSERTCHAR	An IME specifies this value when wParam shows a composition character which should be inserted into current insertion point. An application should display a composition character if it processes this bit flag.

CS_NOMOVECARET	An IME specifies this value when it doesn’t want an application to move caret position as a result of processing WM_IME_COMPOSITION. For example, if an IME specifies a combination of CS_INSERTCHAR and CS_NOMOVECARET, it means that an application should insert a character given by wParam to the current caret position but shouldn’t move caret. Subsequent WM_IME_COMPOSITION with GCS_RESULTSTR will replace this caracter.

Return value	Not used.

NOTE	An application that wants to display composition characters by itself should not pass this message to either Application IME User Interface window or DefWindowProc(). DefWindowProc() processes this message to pass it to Default IME window. An IME should give this message to an application even when the IME just cencels the current composition. An application or IME UI should get motified with this message to erase the current composition string.

See Also	ImmGetCompositionString

 WM_IME_COMPOSITIONFULL

Feature	This message is sent to an application when IME User Interface window finds no space to extend area for the composition window anymore. Application should specify the way to display window for IME UI in process of this messages.

wParam	Not Used.

lParam	Not Used.

Return Value	Not Used.

Note	This messages is sent to an application via SendMessage() by IME User Interface window not by IME itself . This is a notification.

See Also	IMC_SETCOMPOSITONWINDOW

 WM_IME_ENDCOMPOSITION

Feature	This message is sent to an application when IME ends composition.

wParam / lParam	Not Used.

Return Value	Not Used.

Note	An application that wants to display composition characters by itself should not pass this message to either Application IME User Interface window or DefWindowProc(). DefWindowProc() processes this message to pass it to Default IME window.

	

 WM_IME_SELECT

Feature	This message will be sent to UI window when system is about to change current IME.

wParam	fSeleft = (BOOL)wParam;. TRUE: IME is newly selected. FALSE the IME is unselected.

lParam	hKL = lParam;

Return Value	Not Used.

Note	System IME class handles this message to create a new UI window and destroy an old UI window for application or System. DefWindowProc() process this message to pass the information to the Default IME windowand Default IME winodw sends this message to its UI window.

 WM_IME_STARTCOMPOSITION

Feature	This message is sent immediately before an IME generates composition string as a result of a user's key stroke. TheUI window will open its composition window when it receives this message.

wParam / lParam	Not Used.

Return Value	Not Used.

Note	An application that wants to display composition characters by itself should not pass this message to either Application IME window or DefWindowProc(). DefWindowProc() processes this message to pass it to Default IME window.

 WM_IME_NOTIFY

This message is a group of sub messages to notify application or UI window the IME status.

Followings are list of sub message classified by the value of wParam.

IMN_CLOSESTATUSWINDOW

Feature	This message is sent when an IME is about to close status window.

lParam	Not Used.

Return Value	Not Used.

Note	The UI window will close status window when it processes this message.

IMN_OPENSTATUSWINDOW

Feature	This message is sent when an IME is about to create status window. Application processes this message to display system window for the IME by itself.

	Application can get information about system window with ImmGetConversionStatus API.

lParam	NotUsed

Return Value	Not Used

Note	The UI window will create a status window when it processes this message.

See Also	ImmGetConversionStatus

IMN_OPENCANDIDATE

Feature	This message is sent when an IME is about to open candidates window. Application processes this message to call ImmGetCandidateCount() / ImmGetCandidateList() to display candidates by its own way.

lParam	Shows which candidate list should be updated.

	Ex. if bit0 is 1, the first candidate list should be updated. If bit31 is 1, the 32nd candidate list should be updated.

Return Value	Not Used.

Note	The UI window creates a candidate window when it processes this message.

See Also	ImmGetCandidateListCount / ImmGetCandidateList, WM_IME_CHANGECANDIDATE

IMN_CHANGECANDIDATE

Feature	This message is sent when an IME is about to change the content of candidates window. Application processes this message to display candidates by itself.

lParam	Shows which candidate list should be updated.

	Ex. if bit0 is 1, the first candidate list should be updated. If bit31 is 1, the 32nd candidate list should be updated.

Return Value	Not Used.

Note	The UI window redraw a candidate window when it processes this message.

See Also	ImmGetCandidateCount / ImmGetCandidateList

IMN_CLOSECANDIDATE

Feature	This message is sent when an IME is about to close candidates window. Application processes this message to be informed about the end of candidate processing.

lParam	Shows which candidate list should be closed.

	Ex. if bit0 is 1, the first candidate list should be updated. If bit31 is 1, the 32nd candidate list should be updated.

Return Value	Not Used

Note	The UI window destroy a candidate window when it processes this message.

IMN_SETCONVERSIONMODE

Feature	This message is sent when the conversion mode of the Input Context was updated. When the application or the UI window receive this message, The application or the the UI window can get information about status window with ImmGetConversionStatus API.

lParam	Not Used.

Return Value	Not Used

Note	The UI window redraws its status window, if the status window shows the conversion mode.

IMN_SETSENTENCEMODE

Feature	This message is sent when the sentence mode of the Input Context was updated. When the application or the UI window receive this message, The application or the IME’ UI can get information about status window with ImmGetConversionStatus API.

lParam	Not Used.

Return Value	Not Used

Note	The UI window redraws its status window, if the status window shows the sentence mode.

IMN_SETOPENSTATUS

Feature	This message is sent when the open status of the Input Context was updated. When the application or the UI window receive this message, The application or the UI window can get the information with ImmGetOpenStatus API.

lParam	Not Used.

Return Value	Not Used

Note	The UI window redraws its status window, if the status window shows the open/close status.

IMN_SETCANDIDATEPOS

Feature	This message is sent when an IME is about to move candidates windows. Application processes this message to be informed about the end of candidate processing.

lParam	Shows which candidate list should be moved.

	Ex. if bit0 is 1, the first candidate list should be updated. If bit31 is 1, the 32nd candidate list should be updated.

Return Value	Not Used

Note	The UI window moves a candidate window when it processes this message.

IMN_SETCOMPOSITIONFONT

Feature	This message is sent when the Font of the Input Context was updated. When the application or the UI window receive this message, The application or the UI window can get the information about composition font with ImmGetCompositionFont API.

lParam	Not Used.

Return Value	Not Used

Note	The composition component of UI window use lfFont to draw the text of the composition string.

IMN_SETCOMPOSITIONWINDOW

Feature	This message is sent when the composition form of the Input Context was updated. When the UI window receive this message, the cfCompForm of the Input Context can be refered to get the new conversion mode.

lParam	Not Used.

Return Value	Not Used

Note	The composition component of the UI windows use cfCompForm to show the composition window.

IMN_GUIDELINE

Feature	This message is sent when an IME is about to show the error or information. The application or the UI window receive this message, the application or the UI window can get the information of guide line with ImmGetGuideLine API.

lParam	Not Used. Have to be 0.

Return Value	Not Used.

Note	The UI window may create a information window when it processes this message and show the information string.

See Also	ImmGetGuideLine, GUIDELINE Structure

IMN_SOFTKBDDESTROYED

Feature	This message is sent to the UI window when the soft keyboard is destroyed.

lParam	Not Used. Have to be 0.

Return Value	Not Used.

 WM_IME_KEYDOWN / WM_IME_KEYUP

Feature	This is sent to an application when IME need to generate WM_KEYDOWN / WM_KEYUP message. The form of value to be sent is same as original English Windows WM_KEYDOWN / WM_KEYUP.

wParam	This variable gets same as original English Windows WM_KEYDOWN / WM_KEYUP.

lParam	This variable gets same as original English Windows WM_KEYDOWN / WM_KEYUP.

Return value	Not used.

Note	Application can handle this message same as WM_KEYDOWN / WM_KEYUP message, or DefWindowProc() processes this message to generate WM_KEYDOWN / WM_KEYUP message with same wParam and lParam. This message is usually generated by IME to keep message order.

 WM_IME_CHAR

Feature	This is sent to an application when IME get a character of the conversion result. The form of value to be sent is similar to original English Windows WM_CHAR. The difference is that wParam can includ 2 byte of character.

wParam	Includes 2 bytes for a FE character .

	Windows NT-Unicode: Includes a unicode character.

lParam	This variable gets similar as original English Windows WM_CHAR.

Bit	Value

0 - 15	Repeat count: Since the first byte and second byte is continuos, this is always 1.

16 - 23	Scan Code: Scan code for complete a FE character.

24 - 28	Not used.

29	Context code.

31	Conversion state.

Return value	Not used.

Note	DefWindowProc() processes this message to generate 2 of WM_CHAR messages each of that includes 1 byte of DBCS character in the case if it includes 2byte of FE character. If the message just includes a SBCS character, DefWindowProc() generates 1 WM_CHAR.

 VK_PROCESSKEY

Feature	This is sent to an application as a wParam of WM_KEYDOWN or WM_KEYUP. When this virtual key is generated, the real virtual key is saved in the Input Context or the messages that was generated by IME are stored in the Input Context. System restores the real virtual key or posts the messages that are stored in the message buffur of the Input Context.

lParam	must be 1.

IME Interface

Overview

In Windows 95, IMEs are provided as Dynamic Link Library(DLL) like as Device Driver. Input Method Manager(IMM) should handle all of installed IMEs. Because IMEs are changable at running time without rebooting, IMM will have a structure to maintain all entry points of each IME.

Following IME API list is the description of all of Far East common IME APIs. These entry should not be called by an application directly.

List of IME Interface Functions

ImeInquire

Windows 95 and Windows NT 3.51

Syntax	BOOL ImeInquire(lpIMEInfo, lpszWndClass, lpszData)

Parameter	Type	Description

lpIMEInfo	LPIMEINFO	lpIMEINFO

lpszWndClass	LPTSTR	the class name that should be filled up by IME. This class name is IME’s UI class.

lpszData	LPCTSTR	IME option block, it is NULL for this version.

Windows NT 4.0

Syntax	BOOL ImeInquire(lpIMEInfo, lpszWndClass, dwSystemInfoFlags)

Parameter	Type	Description

lpIMEInfo	LPIMEINFO	lpIMEINFO

lpszWndClass	LPTSTR	the class name that should be filled up by IME. This class name is IME’s UI class.

dwSystemInfoFlags	DWORD	various system information provided by the system

	IME_SYSINFO_WINLOGON

		The system tells IME that the client process is WinLogon process. IME should not allow users to configure IME when this flag is specified.

	IME_SYSINFO_WOW16

		The system tells IME that the client process is 16 bit application.

	

Feature	This function handle initialization of IME. It also returns IMEINFO structure and UI class name of IME.

Return Value	Returns TRUE if successful, otherwise FALSE.

ImeConversionList

Syntax	DWORD IMEConversionList(hIMC, lpSrc, lpDst, dwBufLen, uFlag)

Feature	Obtain the list of FE character or string from one character or string.

Parameter	Type	Description

hIMC	HIMC	Input Context handle

lpSource	LPCTSTR	Character string to be converted.

lpDest	LPCANDIDATELIST�Pointer to destination buffer

dwBufLen	DWORD	Length of the destination buffer

uFlag	UINT	Currently it can be one of following three.

		GCL_CONVERSION specifies reading string to lpSrc and the IME returns the result string in the lpDst.

		GCL_REVERSECONVERSION specifies the result string in lpSrc the IME returns the reading string in the lpDst.

		GCL_REVERSE_LENGTH specifies the result string in lpSrc the IME returns the length that it can hanlde on GCL_REVERSECONVERSION call. For example, one IME can not reverse convert a result string with sentence period to a reading string. So it returns the string length in bytes without the sentence period.

Return Value	Number of bytes of result string list.

Note This API intents to be called by an application or an IME without generating the IME related messages. The IME should not generate any IME related message in this functions.

ImeConfigure

Syntax	BOOL ImeConfigure(hKL, hWnd, dwMode, lpData)

Feature	Provides dialog box to request optional information for an IME.

Parameter	Type	Description

hKL	HKL	The HKL of this IME.

hWnd	HWND	Parent window handle

dwMode	DWORD	The mode of dialog.

	IME_CONFIG_GENERAL�The dialog for general purpose configuration.

	IME_CONFIG_REGWORD�The dialog for register word.

	IME_CONFIG_SELECTDICTIONARY�The dialog for selecting dictionary of the IME.

lpData	LPVOID	A pointer to void, which will be a pointer to REGISTERWORD structure only if dwMode==IME_CONFIG_REGISTERWORD. In other case, lpData should just be ignored.

		This also can be NULL with IME_CONFIG_REGISTER mode if there’s no initial string information is given.

	

Return Value	Returns TRUE if successful, otherwise FALSE.

Notes	An IME checks lpData in the way shown below in the pseudo code.

if (dwmode != IME_CONFIG_REGISTERWORD)

 {

 // Does original execution

 }

else if (IsBadReadPtr(lpdata, sizeof(REGISTERWORD))==FALSE)

 {

	if (IsBadStringPtr(PREGISTERWORD(lpdata)->lpReading, (UINT)-1)==FALSE)

	{

	// Set the reading string to word registering dialogbox

 	}

 	if (IsBadStringPtr(PREGISTERWORD(lpdata)->lpWord, (UINT)-1)==FALSE)

 	{

	// Set the word string to word registering dialogbox

 	}

 }

ImeDestroy

Syntax	BOOL ImeDestroy(uReserved)

Feature	Terminate IME itself.

Parameter	Type	Description

uReserved	UINT	This field is reserved, it should be 0 for now. IME should return FALSE if it is not 0 for this version.

Return Value	Returns TRUE if successful, otherwise FALSE.

ImeEscape

Syntax	LRESULT ImeEscape(hIMC, uEscape, lpData)

Feature	This function allows an application to access capabilities of a particular IME not directly available though other IMM APIs. This is necessary mainly for country specific functions or private functions in IME.

Parameter	Type	Description

hIMC	HIMC	The handle of Input Context.

uEscape	UINT	Specifies the esacpe function to be performed.

lpData	LPVOID	Points to the data required for the specified escape.

uEscape	Meaning

IME_ESC_QUERY _SUPPORT	Checks for implementation. If this escape is not implemented, the return value is zero.

IME_ESC_RESERVED_FIRST	The escape which is between IME_ESC_RESERVED_FIRST and IME_ESC_RESERVED_LAST is reserved by system.

IME_ESC_RESERVED_LAST	The escape which is between IME_ESC_RESERVED_FIRST and IME_ESC_RESERVED_LAST is reserved by system.

IME_ESC_PRIVATE_FIRST	The escape which is between IME_ESC_PRIVATE_FIRST and IME_ESC_PRIVATE_LAST is reserved for the IME, IME can freely use these escape functions for its own purposes.

IME_ESC_PRIVATE_LAST	The escape which is between IME_ESC_PRIVATE_FIRST and IME_ESC_PRIVATE_LAST is reserved for the IME, IME can freely use these escape functions for its own purposes.

IME_ESC_SEQUENCE_TO_INTERNAL�The escape is for Chinese specific. An application wants to run under all Far East platforms should not use it. It is for Chinese EUDC editor. The *(LPDOWRD)lpData is the sequence code and the return value is the character code for this sequence code. Normally, the Chinese IME will encode its reading character codes into sequence 1 to n.

IME_ESC_GET_EUDC_DICTIONARY�The escape is for Chinese specific. An application wants to run under all Far East platforms should not use it. It is for Chinese EUDC editor. On return from the function, the (LPTSTR)lpData is filled with the full path file name of EUDC dictionary. The size of this buffer pointed by lpData should be greater or egual to 80 * sizeof(TCHAR).

IME_ESC_SET_EUDC_DICTIONARY�The escape is for Chinese specific. An application wants to run under all Far East platforms should not use it. It is for Chinese EUDC editor. On return from the function, the (LPTSTR)lpData is the full path file name of EUDC dictionary. The path name should be less than 80 * sizeof(TCHAR).

IME_ESC_MAX_KEY�The escape is for Chinese specific. An application wants to run under all Far East platforms should not use it. It is for Chinese EUDC editor. The return value is the maximun key stokes for an EUDC character.

IME_ESC_IME_NAME�The escape is for Chinese specific. An application wants to run under all Far East platforms should not use it. It is for Chinese EUDC editor. On return from the function, the (LPTSTR) is IME name to be displayed on EUDC editor. The size of this buffer pointed by lpData should be greater or equal to 16 * sizeof(TCHAR).

IME_ESC_SYNC_HOTKEY�The escape is for (Tranditional) Chinese specific. An application wants to run under all Far East platforms should not use it. It is for synchronize between different IMEs. The input parameter *(LPDWORD)lpData is the IME private hot key ID. If this ID is 0, this IME should check every private hot key ID it concerns.

IME_ESC_HANJA_MODE�The escape is for Korean specific. An application wants to run under all Far East platforms should not use it. It is for conversion from Hangeul to Hanja. The input parameter (LPSTR)lpData is filled with Hangeul character which will be converted to Hanja, and it’s null terminated string. When the application want to convert any Hangeul character to Hanja character in the same method of Hanja conversion with composition character is present, the application just request this function and IME set itself as Hanja conversion mode.

Return Value	Returns zero if failure, otherwise the return value depend on each escape function.

Note	Parameter validation should be inside each escape function for robustness.

SeeAlso	ImmEscape

ImeSetActiveContext

Syntax	BOOL ImeSetActiveContext(hIMC , fFlag)

Feature	This function notifies the current active Input Context to IME.

Parameter	Type	Description

hIMC	HIMC	The Input Context to be activated or deactivated.

fFlag	BOOL	TRUE - activated, FALSE - deactivated.

Return Value	Returns TRUE if it is successful otherwise FALSE.

Note	IME is informed by this function about newly selected Input Context. IME can initialize something but it is not required.

SeeAlso	ImeSetActiveContext

ImeProcessKey

Syntax	BOOL ImeProcessKey (hIMC, uVirKey, lParam, lpbKeyState)

Feature	This function pre-processes all the key strokes given through IMM and returns TRUE if that key is necessary for the IME with given Input Context.

Parameter	Type	Description

hIMC	HIMC	Input Context handle

uVirKey	UINT	Virtual key to be processed

lParam	DWORD	lParam of Key messages

lpbKeyState	CONST LPBYTE�Points to a 256-byte array that contains the current keyboard state. The IME should not modify the content of key state.

Note	System decides the Key is handled by IME or not by calling this function. When the function returs TRUE, Before the applications get the messages of the Key, the IME will handle the Key. System will call ImeToAsciiEx functon. If this function returns FALSE, System recognizes that the Key will not handled by IME and the message of the Key will be sent to the applications.

Return Value	Returns TRUE if successful, otherwise FALSE.

NotifyIME

Syntax	BOOL NotifyIME(hIMC, dwAction, dwIndex, dwValue)

Feature	Change the status of IME according to the given parameters.

Parameter	Type	Description

hIMC	HIMC	Input Context handle

dwAction	DWORD	This parameter can be one of the follows.

dwIndex	DWORD	Depends on uAction.

dwValue	DWORD	Depends on uAction.

Parameters	Following are the context item an application can specify in the dwAction parameter:

NI_OPENCANDIDATE	An application meke the IME open the candidate list. Then if IME accept to open the candidate list, the IME will send WM_IME_NOTIFY (subfunction is IMN_OPENCANDIDATE) message.

dwIndex	an index of a candidate list to be opened.

dwValue	Not Used.

NI_CLOSECANDIDATE	An application meke the IME close the candidate list. Then if IME accept to close the candidate list, the IME will send WM_IME_NOTIFY (subfunction is IMN_CLOSECANDIDATE) message.

dwIndex	an index of a candidate list to be closed.

dwValue	Not Used.

NI_SELECTCANDIDATESTR	An application select one of candidates

dwIndex	an index of a candidate list to be selected.

dwValue	an index of a candidate string in the selected candidate list.

NI_CHANGECANDIDATELIST	An application changes the current selected candidate.	

dwIndex	an index of a candidate list to be selected.

dwValue	Not Used.

NI_SETCANDIDATE_PAGESTART	�An application changes the page starting index of a candidate list.

dwIndex	an index of a candidate list to be changed.

dwValue	New page start index.

NI_SETCANDIDATE_PAGESIZE	�An application changes the page size of a candidate list.

dwIndex	an index of a candidate list to be changed.

dwValue	New page size.

NI_CONTEXTUPDATED	An application or system update the Input Context.

dwIndex	For dwValue is�IMC_SETCONVERSIONMODE this parameter is previous conversion mode.�For dwValue is�IMC_SETSENTENCEMODE _this parameter is previous sentence mode.� For other dwValue, dwIndex Not Used.

dwValue	One of followings that are used with WM_IME_CONTROL.

IMC_SETCANDIDATEPOS

IMC_SETCOMPOSITIONFONT

IMC_SETCOMPOSITIONWINDOW

IMC_SETCONVERSIONMODE

IMC_SETSENTENCEMODE

IMC_SETOPENSTATUS

NI_COMPOSITIONSTR	An application makes the effect for IME about the composition string. This action is affected when there is the composition string in the input context.

dwIndex	One of following values.

CPS_COMPLETE

	To determine the composition string as the result string.

CPS_CONVERT

	To convert the composition string.

CPS_REVERT

	To revert the composition string. The current composition string will be canceled and the unconverted string will be set as composition string.

CPS_CANCEL

	To clear composition string and set the status as no composition string.

dwValue	Not Used.

Return Value	Returns TRUE if successful, otherwise FALSE.

SeeAlso	ImmNotifyIME

ImeSelect

Syntax	BOOL ImeSelect(hIMC, fSelect)

Feature	This function should initialize/uninitialize IME private context.

Parameter	Type	Description

hIMC	HIMC	Input Context handle

fSelect	BOOL	TRUE - initialize/FALSE - unintialized (free resource)

Return Value	Returns TRUE if successful, otherwise FALSE.

ImeSetCompositionString

Syntax 	BOOL WINAPI ImeSetCompositionString(hIMC, dwIndex, lpComp, dwCompLen, lpRead, dwReadLen);

Feature	IME arrange the composition string structure with the data that is in lpComp or lpRead. Then IME generate WM_IME_COMPOSITION message.

Parameter	Type		Description

hIMC	HIMC	 	Input Context handle

dwIndex	DWORD		One of followings

Value of dwIndex	Description

SCS_SETSTR	

SCS_CHANGEATTR	

SCS_CHANGECLAUSE	

lpComp	LPCVOID	A pointer to the buffer that contains the updated string; the type of string determined by the value of dwIndex.

dwCompLen	DWORD	Length of the buffer.

lpRead	LPCVOID	A pointer to the buffer that contains the updated string; the type of string determined by the value of dwIndex.

dwReadLen	DWORD	Length of the buffer.

Return value	TRUE if successfull otherwise FALSE.

ImeToAsciiEx

Syntax	UINT ImeToAsciiEx(uVirKey, uScanCode, lpbKeyState, lpdwTransBuf, fuState , hIMC)

Feature	Generates conversion result through IME conversion engine according to hIMC.

Parameter	Type	Description

uVirKey	UINT	Specifies the virtual key code to be translated. When the property bit IME_PROP_KBD_CHAR_FIRST is on, the upper byte of virtual key is the aid character code.

		Windows NT-Unicode: the upper word of uVirKey contains the aid unicode character code if IME_PROP_KBD_CHAR_FIRST bit is on.

uScanCode	UINT	Specifies the hardware scan code of the key to be translated.

lpbKeyState	CONST LPBYTE�Points to a 256-byte array that contains the current keyboard state. The IME should not modify the content of the key state.

lpdwTransBuf	LPDWORD	Points to a double word buffer to receive the translated result. The format is [Length of the pass in translated message buffer] [Message1] [wParam1] [lParam1] {[Message2] [wParam2] [lParam2]{...{...{...}}}}.

fuState	UINT	Active menu flag.

hIMC	HIMC	Input Context handle

Return Value	Indicate number of messages. If the number is greater than length of the translated message buffer, that means the translated message buffer is not enough. The system will look into the hMsgBuf to get the translation messages.

SeeAlso	ImmToAsciiEx

ImeRegisterWord

Syntax	BOOL WINAPI ImeRegisterWord(lpszReading, dwStyle, lpszString)

Feature	Registers a string into the dictionary of this IME.

Parameter	Type	Description

lpszReading	LPCTSTR	The reading string of the register string.

dwStyle	DWORD	The style of the register string. It includes -�IME_REGWORD_STYLE_EUDC :�The string is in EUDC range.�IME_REGWORD_STYLE_USER_FIRST, IME_REGWORD_STYLE_USER_LAST :�The constants range from IME_REGWORD_STYLE_USER_FIRST to IME_REGWORD_STYLE_USER_LAST are for private styles of the IME ISV. IME ISV can define its own style freely. For ex.�#define MSIME_NOUN (IME_REGWORD_STYLE_USER_FIRST)�#define MSIME_VERB (IME_REGWORD_STYLE_USER_FISRT +1)

lpszString	LPCTSTR	The string to be registered.

Return value	TRUE if the function is successful, FALSE if not.

ImeUnregisterWord

Syntax	BOOL WINAPI ImeUnregisterWord(lpszReading, dwStyle, lpszString)

Feature	Removes a register string from the dictionary of this IME.

Parameter	Type	Description

lpszReading	LPCTSTR	The reading string of the register string.

dwStyle	DWORD	The style of the register string. It includes -�IME_REGWORD_STYLE_EUDC :�The string is in EUDC range.�IME_REGWORD_STYLE_USER_FIRST, IME_REGWORD_STYLE_USER_LAST :�The constants range from IME_REGWORD_STYLE_USER_FIRST to IME_REGWORD_STYLE_USER_LAST are for private styles of the IME ISV. IME ISV can define its own style freely. For ex.�#define MSIME_NOUN (IME_REGWORD_STYLE_USER_FIRST)�#define MSIME_VERB (IME_REGWORD_STYLE_USER_FIRST +1)

lpszString	LPCTSTR	The string to be registered.

Return value	TRUE if the function is successful, FALSE if not.

ImeGetRegisterWordStyle

Syntax	UINT WINAPI ImeGetRegisterWordStyle(nItem, lpStyleBuf)

Feature	Gets the avaible styles in this IME.

Parameter	Type	Description

nItem	UINT	The maximun number of styles that the buffer can hold.

lpStyleBuf	LPSTYLEBUF	The buffer to be filled.

Return value	Returns the number of the styles copied to the buffer or, if nItems is zero, returns the buffer size in array elements needed to receive all avialacle style in this IME.

ImeEnumRegisterWord

Syntax	UINT WINAPI ImeEnumRegisterWord(hKL, lpfnEnumProc, lpReading, dwStyle, lpszString, lpData)

Feature	Enumerates the information of egister strings with specified reading string, style, and register string.

Parameter	Type	Description

lpfnEnumProc	REGISTERWORDENUMPROC�Address of call back funtion.

lpszReading	LPCTSTR	Specifies the reading string to be enumerated. If lpszReading is NULL, this API enumerates all available reading strings that match with the specified dwStyle and lpszString.

dwStyle	DWORD	Specifies the style to be enumerate. If dwStyle is NULL, this API enumerates all available styles that match with the specified lpszReading and lpszString.

lpszString	LPCTSTR	Specifies the register string to be enumerate. If lpszString is NULL, this API enumerates all register strings that match with the specified lpszReading and dwStyle.

lpData	LPVOID	Address of application supplied data.

Return value	If this function is succeeds, the return value is the last value return by the callback function. Its meanig is defined by the application.

Notes	If all lpszReading, dwStyle, and lpszString are NULL, it will enumerates all register strings in the dictionary of IME. Any two of the input parameters are NULL, it will enumerates all register strings matching the third parameter.

�date �09/19/94�	Microsoft Corporation Company Confidential	Page �page �4�

